Abstract

Artificial Intelligence applications in large-scale industry, such as fossil power plants, require the ability to manage uncertainty and time. In this paper, we present an intelligent system to assist an operator of a power plant. This system, called SEDRET, is based on a novel knowledge representation of uncertainty and time, called Temporal Nodes Bayesian Networks (TNBN), a type of Probabilistic Temporal Network. A set of temporal nodes and a set of edge define a TNBN, each temporal node is defined by a value of a variable and a time interval associate to the change of variable value. A TNBN generates a formal and systematic structure for modeling the temporal evolution of a process under uncertainty. The inference mechanism is based on probabilistic reasoning. A TNBN can be used to recognize events and state variables with respect to current plant conditions and predict the future propagation of disturbances. SEDRET was validated with the diagnosis and prediction of events in a steam generator with a power plant training simulator. The results performed in this work indicate that SEDRET can potentially improve plant availability through early diagnosis and prediction of disturbances that could lead to plant shutdown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.