Abstract

Globally, hypoxic areas (<63 mmol O2 m−3) in coastal waters are increasing in number and spatial extent. One of the largest coastal hypoxic regions has been observed during the summer in the bottom-water of the Louisiana continental shelf. The shelf receives the sediments, organic matter, and nutrients exported from the Mississippi River watershed, and much of this material is ultimately deposited to the sea floor. Hence, quantifying the rates of sediment-water dissolved inorganic carbon (DIC), oxygen (O2), and nutrient fluxes is important for understanding how these processes relate to the development and maintenance of hypoxia. In this study, the sediment-water fluxes of DIC, O2, nutrients, and N2 (denitrification) were measured on the Louisiana shelf during six cruises from 2005 to 2007. On each cruise, three to four sites were occupied in or directly adjacent to the region of the shelf that experiences hypoxia. DIC fluxes, a proxy for total sediment respiration, ranged from 7.9 to 21.4 mmol m−2 day−1 but did not vary significantly either spatially or as a function of bottom-water O2 concentration. Overall, sediment respiration and nutrient flux rates were small in comparison to water-column respiration and phytoplankton nutrient demand. Nitrate fluxes were correlated with bottom-water O2 concentrations (r = 0.69), and there was evidence that decreasing O2 concentrations inhibited coupled nitrification-denitrification. Denitrification rates averaged 1.4 mmol N m−2 day−1. Scaled to the area of the shelf, the denitrification sink represented approximately 39% of the N load from the Mississippi River watershed. The sediment-water fluxes reported from this study add substantial information on the spatial and temporal patterns in carbon, O2, and nutrient cycling available for the Louisiana continental shelf and, thus, improve the understanding of this system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call