Abstract

AbstractReservoirs along rivers have the potential to act as nutrient sinks (e.g., denitrification and sedimentation) or sources (e.g., decomposition and redox changes), potentially reducing or enhancing nutrient loads downstream. This study investigated the spatial and temporal variability of water and lakebed sediment chemistry for an agricultural reservoir, Carlyle Lake (Illinois, U.S.), to assess the role of sediments as nutrient sinks or sources. Samples were collected across the reservoir over a 2‐year period. We measured N‐ and P‐species in water at the sediment‐water interface, in sediment porewaters, and loosely bound to sediment exchange sites. Total N, total P, total C, organic matter, Fe, Mn, and grain size were measured in bulk sediments. We observed a strong gradient in sedimentary total N, total P, total C, organic matter, and metals along the reservoir, with the lowest concentrations at the river mouth and the highest concentrations near the dam. Additionally, we did a long‐term nutrient mass balance using historical water quality data for streams entering and exiting the reservoir and the reservoir itself. Mass balance calculations showed that Carlyle Lake, on average, removed 2,738 Mg N/year and released 121 Mg P/year over the multidecadal observation period. While N was consistently removed from the system over time, P was initially stored in, but later released from, the reservoir. The subsequent release of legacy P from the reservoir led to higher outgoing, compared with incoming, P loads. Thus, reservoirs in intensively managed landscapes can act as sinks for N but sources for P over decadal timescales.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call