Abstract

Continental shelf sediments are a key source of trace metals to the ocean. In this study, we investigate the impact of sedimentary processes on water column concentrations of iron (Fe), manganese (Mn), cobalt (Co), and nickel (Ni) at five stations on the Louisiana continental shelf and slope, Gulf of Mexico. The highest trace metal concentrations were observed close to the seafloor at the most nearshore shelf station (water depth of 16 m), with most of the metals present in particulate form. This enrichment in the bottom water is likely the combined effect of input of trace metals in suspended matter from the Mississippi/Atchafalaya Rivers and, for Mn, Co, and Ni, benthic release from the shelf sediments. While particulate matter was the dominant carrier of Fe and Mn in bottom waters in the shelf and slope regions, Co and Ni were nearly exclusively present in dissolved form. Hence, lateral transport of Co and Ni in shelf waters is decoupled from that of Fe and Mn. Concentrations of particulate and dissolved trace metals in the water column generally decreased from the shelf to the slope, while those in the sediment increased. This suggests an increased retention of metals deposited on the sediment with distance from the coast, linked to the decrease in organic matter input and associated reductive sediment processes. The offshore decline in sediment trace metal mobilization is likely typical for river-dominated continental margins where most organic matter is deposited close to the coast.

Highlights

  • Continental shelf sediments are a key source of bio-essential trace metals, such as iron (Fe), manganese (Mn), cobalt (Co), and nickel (Ni), to ocean waters (Lam and Bishop, 2008; Lam et al, 2012; Noble et al, 2017)

  • Besides water column analyses of Fe, Mn, Co, and Ni, we present the speciation of Fe in the suspended matter and sediment, porewater profiles of Fe and Mn, sediment depth profiles of Fe, Mn, Co, and Ni and in-situ benthic fluxes of the same metals for the most nearshore stations

  • Suspended matter and solutes derived from the Louisiana continental shelf and slope are transported to the open ocean by the Loop Current, which variably interacts with the continental shelf (Charette et al, 2016; Mellett and Buck, 2020)

Read more

Summary

Introduction

Continental shelf sediments are a key source of bio-essential trace metals, such as iron (Fe), manganese (Mn), cobalt (Co), and nickel (Ni), to ocean waters (Lam and Bishop, 2008; Lam et al, 2012; Noble et al, 2017). Transport of trace metals from the coastal zone to the open ocean typically involves one or more cycles of benthic release, lateral transport in the water column and redeposition in particulate form (Raiswell and Canfield, 2012). Further insight in this recycling is essential for our understanding of present-day trace metal fluxes from the coastal to the open ocean and how these fluxes may change in the future (Henderson et al, 2018). The Fe and Mn oxides, in turn, can scavenge dissolved Co and Ni (Moffett and Ho, 1996; Peacock and Sherman, 2007)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call