Abstract

We examine the stratigraphic architecture and mineralogy of the western fan deposit in the Jezero crater paleolake on Mars to reassess whether this fan formed as a delta in a standing body of water, as opposed to by alluvial or debris flow processes. Analysis of topography and images reveals that the stratigraphically lowest layers within the fan have shallow dips (<2°), consistent with deltaic bottomsets, whereas overlying strata exhibit steeper dips (∼2–9°) and downlap, consistent with delta foresets. Strong clay mineral signatures (Fe/Mg-smectite) are identified in the inferred bottomsets, as would be expected in the distal fine-grained facies of a delta. We conclude that the Jezero crater western fan deposit is deltaic in origin based on the exposed stratal geometries and mineralogy, and we emphasize the importance of examining the stratigraphic architecture of sedimentary fan deposits on Mars to confidently distinguish between alluvial fans and deltas. Our results indicate that Jezero crater contains exceptionally well-preserved fluvio-deltaic stratigraphy, including strata interpreted as fine-grained deltaic bottomsets that would have had a high potential to concentrate and preserve organic matter. Future exploration of this site is both geologically and astrobiologically compelling, and in situ analyses would be complementary to the ongoing in situ characterization of fluvio-lacustrine sediment in the Gale crater paleolake basin by the Curiosity rover.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call