Abstract

When giant electrorheological (GER) fluid is settled after some time, particles can precipitate out of the oil in a multistep process that involves the formation of larger particles, the aggregation of colloids, and eventual sedimentation. Colloidal stability in giant electrorheological (GER) fluid can influence the GER performance and the fluid flow steadiness. We investigated the sedimentation effect of the GER particles suspended in various carrier liquid. Different from the existing electrorheological (ER) fluids, GER particles consisting of oxalate core with urea coating are found oil synergistic. The sedimentation effect of the particles suspended in oils from the family of synthetic oil and mineral oil were checked by direct observation. The rheological behavior of the GER fluid upon electric field application was also investigated. These experiments showed that stable colloidal suspension and good GER effect can be achieved coherently by favorable particle-oil interaction. The resultant high yield stress and low sedimentation rate achieved due to the instrumental linking of hydrogen bond is showed in the hydrogenated silicone oil carrier liquid. With the anti-sedimentation characteristic upon the new carrier oil, hydrogenated silicone oil-GER fluid, we investigated their GER effect in a modified mono tube damper and the experimental result showed wide controllability range. Our investigations may broaden engineering applications.

Highlights

  • Field responsive fluids, such as electrorheological (ER) fluid and magnetorheological (MR) fluid, are a trend to the new generation in design for product where power density, accuracy, and dynamic performance are the key features

  • giant electrorheological (GER) PARTICLE CHARACTERIZATION The dried GER particles were analyzed by scanning electron microscopy (SEM) imaging (Figure 1)

  • In this study, we investigated the role played by carrier liquid in the stability against particle aggregation and settling, the redispersibility of concentrated GER suspension and their GER effect

Read more

Summary

Introduction

Field responsive fluids, such as electrorheological (ER) fluid and magnetorheological (MR) fluid, are a trend to the new generation in design for product where power density, accuracy, and dynamic performance are the key features. These materials are different from the traditional smart materials, in that they are soft materials (typically dispersions or gels) rather than solids. Excellent features like fast response, simple interface between electrical power input and the mechanical power output, and controllability make smart material the technology of choice for many applications (Stanway, 2004; Shen et al, 2006). Other than the breakthrough of the high yield stresses (100–200 kPa), there are other merits of such GER fluid including fast response time, reasonable sedimentation rate as well as high breakdown voltage, which open wide up for different industrial application such as car suspension and robotics

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call