Abstract

Tidal channels are crucial for the functioning of highly valuable coastal environments, such as estuaries and lagoons. Their properties, however, are currently less understood than those of river systems. To elucidate their past behaviour, an extensive geophysical investigation was performed to reconstruct the evolution of channels and tidal surfaces in the central part of the Lagoon of Venice (Italy) over the past 5000 years. Comparing high-spatial-resolution acoustic data and sedimentary facies analyses of 41 cores, 29 of which were radiocarbon dated, revealed the sedimentation rates in different lagoonal environments and allowed the migration of two large meanders to be reconstructed. The average sedimentation rate of the study succession in the different sedimentary environments was 1.27 mm yr−1. The lateral migration rates were 13–23 m/century. This estimate is consistent with the lateral migration rates determined by comparing aerial photographs of recent channels.Comparing the buried channels with historical and current maps showed that, in general, the number of active channels is now reduced. Their morphology was sometimes simplified by artificial interventions. An understanding of the impact of the artificial interventions over time is useful for the management and conservation of tidal environments, particularly for the Lagoon of Venice, where management authorities are currently debating the possible deepening and rectification of large navigation channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.