Abstract
The sedimentation of particles with various shapes and orientations in a closed channel using smoothed particle hydrodynamics is investigated in this paper. The continuity and momentum equations of both fluid and solid are discretized using kernel approximation in the Lagrangian frame. The sedimentation behavior of different general shapes, including circle, pentagon, square, ellipse, rectangle, and triangle, at various initial orientations in the suspending fluid is simulated. The stable equilibrium orientation (SEO) of these shapes is examined, excluding the circle which serves as a validation case. Specifically, the major axis of the ellipse and rectangle tends to align horizontally, whereas the orientations of the pentagon and square seem to be random due to the lack of a major axis and the finite channel height. The settling behavior of the three types of triangles is also discussed, and the von Mises stress of these shapes during their settling is presented. This study offers valuable insights into fluid-particle interactions, specifically regarding the SEO and internal stress of settling particles with varying shapes and orientations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.