Abstract

We describe a numerical method for calculating hydrodynamic interactions between spherical particles efficiently and accurately, both for particles immersed in an infinite liquid and for systems with periodic boundary conditions. Our method is based on a multipole expansion in Cartesian tensors. We then show how to solve the equations of motion for translational and rotational motion of suspended particles at large Peclet numbers. As an example we study the sedimentation of an array of spheres with and without periodic boundary conditions. We also study the effect of perturbations on the stability of the trajectories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.