Abstract

AbstractThe cloud stability of carrot juices was investigated using physical methods. In contrast to cloudy juices from fruits or other vegetables described so far, complete clarification of juice samples could not be achieved even after ultracentrifugation. Since the density of one particle fraction was almost equal to that of the continuous phase, this fraction was resistant to sedimentation by centrifugal forces up to 60 600 × g in an 8° Brix carrot juice. Cloud stability problems of carrot juices, therefore, are usually associated with bottom sediment formation, but not with visible loss of turbidity. Particle size and density were shown to be decisive for suspension stability, whilst both particle charge and serum viscosity did not show any effect on cloud stability. The reasons for the exceptional stability of the suspended particles are discussed. Based on three particle fractions, a new physical concept could be deduced according to particle size and density explaining the extraordinary suspension stability of carrot juices. Copyright © 2003 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.