Abstract
Abstract Mercury (Hg) concentrations and Hg isotopic composition were investigated in three sediment cores in Lake Michigan (LM). Two cores were collected from Green Bay, a region heavily impacted by Hg contamination and one core from an offshore region of LM absent of direct point source Hg. Historical trends of Hg influxes suggest increased Hg deposition began in the 1890s in Green Bay and in the early 1800’s in offshore LM. Recently deposited sediment reflecting more anthropogenic influence shows similar δ202 Hg values (-1.0 to -0.5‰) for all three cores however, deep core sediments, reflecting pre-industrial eras, show much lower δ202Hg values (-1.7 to -1.2‰). Using a binary mixing model based on δ202Hg signatures, the proportion of anthropogenic Hg was estimated. Model output confirms that Green Bay is more contaminated by local point source than the offshore LM. An increase in positive Δ199Hg values (-0.02 to +0.27‰) was observed from inner Green Bay to the offshore of LM, which may indicate increased input of atmospheric Hg and decreased watershed inputs along this transect. Overall, this study suggests that sedimentary Hg isotopes maybe a useful tracer in understanding Hg sources and history of Hg contamination in large lakes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.