Abstract

The segmenting of gravel-bed rivers flowing through mountain valleys into a number of discrete ‘sedimentary links’, each characterized by downstream fining of alluvium, is a relatively recent concept which offers promise to model the large-scale spatial organisation of many types of aquatic habitat (reproductive, feeding, refuge, etc), strongly dependent on dominant bed sediment calibre. Although, so far, the ecological application of the concept has mainly focused on benthic invertebrates, here we illustrate its application to fish (Atlantic salmon; Salmo salar). Moreover, the link concept has also been primarily applied to alpine river environments where link formation is triggered by point sources (mainly tributaries) supplying coarser sediment. However, somewhat lower relief, mountain valley landscapes of North Eastern Canada are often structured into sedimentary links triggered by non-point, ‘supply zones’ of coarse sediments, originating in bedrock canyon reaches or valley bottom deposits of glacial drift. Here, we propose an adaptation and extension of the original, sedimentary link concept to such landscapes and test its utility along one such system, the Ste Marguerite River (SMR), a salmon river draining the Canadian Shield in the Saguenay region of Québec. We first discuss a simple field and office based method of link delineation. Then we discuss potential sources of minor, sublink scale grain size variability and their effects on how sedimentary links are defined. Lastly, we demonstrate the usefulness of the link structure to model the distribution of Atlantic salmon spawning habitat (a habitat that depends critically on bed texture). Our results indicate that a revised sedimentary link typology is needed to describe longitudinal grain size patterns where non-point, valley-segment scale sources of coarse sediment are important and that consideration of the research purpose and scale is important in defining meaningful link units. We also show that salmon spawning zones can be directly predicted from the link structure: along the SMR, spawning activity is apportioned within each of the discrete links, in those sub-zones where surface sediment size and sand content are optimal for reproduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call