Abstract

Cryogenian synglacial deposits are regionally thin but locally thick, considering glacial duration, but the reasons for local thickening are poorly known. We studied three local thickenings of the Sturtian Chuos Formation in northern Namibia by measuring closely spaced columnar sections, not only of the synglacial deposits but also of the bounding pre- and post-glacial strata. This enabled incised paleovalleys filled by glacial debris to be distinguished from morainal buildups. In case 1, a U-shaped paleovalley, ∼450 m deep by ∼3.0 km wide, is incised into pre-glacial strata and 10% overfilled by ice-contact and subglacial meltwater deposits. In case 2, a wedge of glacial diamictite, ~220 m thick by 2.0 km wide, overlies a disconformity that is demonstrably not incised into underlying pre-glacial strata. The wedge, draped by a post-glacial cap carbonate and argillaceous strata, is erosionally truncated at its apex by Marinoan glacial deposits and their basal Ediacaran cap dolomite. The wedge was a positive topographic feature, either a terminal moraine or an erosional outlier of formerly more extensive glacial deposits. In case 3, a wedge of conglomerate, glacial diamictite, and subglacial lake deposits thickens to >2000 m where it abuts against granitoid basement rock uplifted along a border fault. Fault movement ceased before the Sturtian cap carbonate was deposited. The locus of maximum deposition shifted over time from proximal to distal with respect to the border fault, similar to Mesozoic half grabens developed above listric detachments imaged seismically on offshore North Atlantic margins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call