Abstract

Cenozoic sedimentary deposits in central-southern Ningxia province, NW China are an important record of Tertiary tectonic events along the evolving Qinghai–Tibetan Plateau’s northeast margin. Shortly after the onset of the Indo-Eurasia collision to the south, a thrust belt and adjoining foreland basin began to form during 40–30 Ma. The Eocene Sikouzi Formation developed in a distal setting to this basin, in normal fault-bound basins that may have formed in a forebulge setting. Subsequent deposition of the Oligocene Qingshuiying Formation occurred during a phase of apparently less intense tectonism and the previous underfilled foreland basin became overfilled. During the Early Miocene, contractional deformation was mainly distributed to the west of the Liupan Shan. This resulted in deformation of the Qingshuiying Formation as indicated by an unconformity with the overlying Miocene Hongliugou Formation. The unconformity occurs proximal to the Haiyuan Fault suggesting that the Haiyuan Fault may have begun movement in the Early Miocene. In the Late Miocene, thrusting occurred west of the southern Helan Shan and an unconformity developed between the Hongliugou and Qingshuiying Formations proximal to the the Cha-Gu Fault. Relationships between the Miocene stratigraphy and major faults in the region imply that during the Late Miocene the deformation front of the Qinghai–Tibetan Plateau had migrated to the Cha-Gu Fault along the western Ordos Margin, and the Xiang Shan was uplifted. Central-southern Ningxia was then incorporated into the northeast propagating thrust wedge. The driving force for NE propagation of the thrust wedge was most likely pronounced uplift of the northeastern plateau at the same time. Analysis of the sedimentary record coupled with consideration of the topographic evolution of the region suggests that the evolving fold-and-thrust belt experienced both forward-breaking fold-and-thrust belt development, and out-of-sequence fault displacements as the thrust wedge evolved and the foreland basin became compartmentalised. The documented sedimentary facies and structural relationship also place constraints on the Miocene-Recent evolution of the Yellow River and its tributaries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call