Abstract

The guide vane of a hydraulic turbine in any sediment-laden hydropower station is one of the components most seriously affected by sediment abrasion. Damage to a guide vane can significantly impact stable operation and energy characteristics of the unit, and it is thus essential to address and effectively manage this problem. In this study, the k-ε solid–liquid two-phase turbulence model and sample algorithm were used to numerically simulate the sand-water flow through the entire passage of a hydraulic turbine and sand samples were subsequently collected from the hydropower station to examine the sediment abrasion damage to turbine’s guide vane, which was made of ZG06Cr13Ni4Mo. Thereafter, calculation and test results were used to establish a prediction model for sediment abrasion of hydraulic turbine guide vane. These research findings could provide guidance for improved hydraulic turbine design and could thus contribute to the optimized operation of sediment-laden hydropower stations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call