Abstract

Using an integrated multi-beam bathymetry, high-resolution seismic profile, piston core, and AMS 14C dating data set, the current study identified two sediment wave fields, fields 1 and 2, on the South China Sea Slope off southwestern Taiwan. Field 1 is located in the lower slope, and sediment waves within it are overall oriented perpendicular to the direction of down-slope gravity flows and canyon axis. Geometries, morphology, and internal seismic reflection configurations suggest that the sediment waves in field 1 underwent significant up-slope migration. Field 2, in contrast, is located more basinward, on the continental rise. Instead of having asymmetrical morphology and discontinuous reflections as observed in field 1, the sediment waves in field 2 show more symmetrical morphology and continuous reflections that can be traced from one wave to another, suggesting that vertical aggradation is more active and predominant than up-slope migration.Three sediment wave evolution stages, stage 1 through stage 3, are identified in both field 1 and field 2. During stage 1, the sediment waves are built upon a regional unconformity that separates the underlying mass-transport complexes from the overlying sediment waves. In both of these two fields, there is progressive development of the sediment waves and increase in wave dimensions from the oldest stage 1 to the youngest stage 3, even though up-slope migration is dominant in field 1 whereas vertical aggradation is predominant in field 2 throughout these three stages.The integrated data and the depositional model show that the upper slope of the study area is strongly dissected and eroded by down-slope gravity flows. The net result of strong erosion is that significant amounts of sediment are transported further basinward into the lower slope by gravity flows and/or turbidity currents. The interactions of these currents with bottom (contour) currents induced by the intrusion of the Northern Pacific Deep Water into the South China Sea and preexisting wavy topography in the lower slope result in the up-slope migrating sediment waves in field 1 and the contourites as observed from cores TS01 and TS02. Further basinward on the continental rise, turbidity currents are waned and diluted, whereas along-slope bottom (contour) currents are vigorous and most likely dominate over the diluted turbidity currents, resulting in the vertically aggraded sediment waves in field 2.The results from this study also provide the further evidence for the intrusion of the Northern Pacific Deep Water into the South China Sea and suggest that this intrusion has probably existed and been capable of affecting sedimentation in South China Sea at least since Quaternary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call