Abstract

Sediment transport capacity, Tc, defined as the maximum amount of sediment that a flow can carry, is the basic concept in determining detachment and deposition processes in current process-based erosion models. Although defined conceptually and used extensively in modelling erosion, Tc was rarely measured. Recently, a series of laboratory studies designed to quantify effects of surface hydrologic conditions on erosion processes produced data sets feasible to evaluate the concept of Tc. A dual-box system, consisting of 1·8 m long sediment feeder box and a 5 m long test box, was used. Depending on the relative magnitudes of sediment delivery from feeder and test boxes, five scenarios are proposed ranging from deposition-dominated to transport-dominated sediment regimes. Results showed that at 5 per cent slope under seepage or 10 per cent slope under drainage conditions, the runoff from the feeder box caused in the additional sediment transport in the test box, indicating a transport-dominated sediment regime. At 5 per cent slope under drainage conditions, deposition occurred at low rainfall intensities. Increases in slope steepness, rainfall intensity and soil erodibility shifted the dominant erosion process from deposition to transport. Erosion process concepts from the Meyer–Wishmeier, Foster–Meyer and Rose models were compared with the experimental data, and the Rose model was found to best describe processes occurring during rain. A process-based erosion model needs to have components that can represent surface conditions and physical processes and their dynamic interactions. Copyright © 1999 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.