Abstract

The suspension and hydrodynamic characteristics of the Yellow River Delta during storms were analyzed based on suspended samples obtained using automatic samplers during a storm event in the Yellow River Delta. Synchronous data for winds, waves, and tides were also collected from a nearby station. The results show that under wind speeds of 5-15m/s and wave heights of 50-150cm, the suspended content reached 5.7-49.6kg/m3, which is 10-100 times higher than that under normal weather conditions. The medium diameter of suspended particles was 1.2-2.1μm (8.9-9.7Φ), which was approximately 1-2Φ finer than that under normal weather conditions. During the early stages of the measurements, the sea level had risen by 50cm owing to the storm, which was in addition to the tidal sea level change. We suggest that during the storms, the waves strengthened and the storm-induced sea level change, which was combined with tidal currents moving in the same direction, produced high-speed currents. This overcame the cohesive forces among the fine sediment particles and suspended a large amount of sediment. As a result, the suspended content increased markedly and the suspended particle size became finer. This explains the intense siltation and erosion of the Yellow River Delta during storms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.