Abstract

Antibiotic pollution poses serious threats to public health and ecological processes. However, systematic research regarding the interactive effects of increasing nutrient and antibiotic pollutions on the prokaryotic community, particularly taxa that contribute to greenhouse gas emissions, is lacking. By exploring the complex interactions that occur between interkingdom bacteria and archaea, biotic and abiotic factors, the responses of sediment prokaryotic assembly were determined along a significant antibiotic pollution gradient. Bacterial and archaeal communities were primarily governed by sediment antibiotic pollution, ammonia, phosphate, and redox potential, which further affected enzyme activities. The two communities nonlinearly responded to increasing antibiotic pollution, with significant tipping points of 3.906 and 0.979 mg/kg antibiotics, respectively. The combined antibiotic concentration-discriminatory taxa of bacteria and archaea accurately (98.0% accuracy) diagnosed in situ antibiotic concentrations. Co-abundance analysis revealed that the methanogens, methanotrophs, sulfate-reducing bacteria, and novel players synergistically contributed to methane cycling. Antibiotic pollution caused the dominant role of ammonia-oxidizing archaea in ammonia oxidation at these alkaline sediments. Collectively, the significant tipping points and bio-indicators afford indexes for regime shift and quantitative diagnosis of antibiotic pollution, respectively. Antibiotic pollution could expedite methane cycling and mitigate nitrous oxide yield, which are previously unrecognized ecological effects. These findings provide new insights into the interactive biological and ecological consequences of increasing nutrient and antibiotic pollutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.