Abstract

Abstract. Internal phosphorus (P) loading is a leading contributor to eutrophication in reservoirs and can cause harmful algal blooms as well as treatment issues for drinking water reservoirs. Coves are an area of reservoirs that have not received adequate attention, even though they experience higher nutrient and sediment deposition and primary production per unit area when compared to the pelagic zone of the reservoir. This study investigates a shallow eutrophic cove in a northwest Arkansas reservoir called Beaver Lake to better understand the cove’s potential to contribute to P loading and eutrophication within the reservoir. The study period was 3 to 16 July 2018. Water column profiles of depth, temperature, and dissolved oxygen were measured with a floating sensor platform that also contained a weather station. Cove bed sediment samples were collected at three locations in the cove and analyzed for chemical composition through Mehlich III extraction and P, nitrate + nitrite (N+N), and ammonia release rates with aerobic and anaerobic sediment core incubations. Bathymetry data were collected using a depth sonar system. Sensor platform profiles indicated dynamic bottom temperature and dissolved oxygen conditions with transient influxes of hypoxic waters that occurred several times for less than 24 h. The P release rates from bed sediment incubations were as high as 2.02 mg m-2 d-1 under aerobic conditions and 4.45 mg m-2 d-1 under anaerobic conditions. Upon initiation of nitrogen gas bubbling in the sediment cores, anaerobic conditions were delayed by the presence of N+N. Phosphorus release did not occur until denitrification decreased the N+N concentrations enough for reducing conditions to be present. For the study period, a P flux into the water of roughly 1 kg was determined using cove profiles, bathymetry, and P release rates. When compared to whole-lake P release averages for Beaver Lake, eutrophic coves are a disproportionate source of P per unit area within the reservoir. This may offer opportunities for more efficient use of internal loading remediation techniques, such as alum application. The results of this study also suggest that we should not continue to overlook shallow-area bed sediment P flux when considering the P mass balance of a reservoir. Keywords: Eutrophication, Sediment core incubation, Stratification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call