Abstract

Sediment organic carbon (SOC) is a precious archive that synthesizes anthropogenic processes that remove geochemical fluxes from watersheds. However, the scarcity of inspection about the dynamic mechanisms of anthropogenic activities on SOC limits understanding into how key human factors drive carbon dynamics. Here, four typical basins with similar natural but significantly diverse human contexts (high-moderate-low disturbance: XJ-ZS and YJ-LS) were selected to reconstruct sedimentation rates (SR) and SOC dynamics nearly a century based on 200-cm corers. A partial least squares path model (PLS-PM) was used to establish successive (70 years) and multiple anthropogenic data (population, agriculture, land use, etc.) quantification methods for SOC. Intensified anthropogenic disturbances shifted all SR from pre-stable to post-1960s fluctuating increases (total coefficient: high: 0.63 < low: 0.47 < medium: 0.45). Although land use change was co-critical driver of SOC variations, their trend and extent differed under the dams and other disturbances (SOC mutated in high-moderate but stable in low). For high basin, land use changes increased (0.12) but dams reduced (−0.10) the downstream SOC. Furthermore, SOC mutation corresponded to soil erosion due to urbanization in both periods A and B. For moderate, SOC was reversed with the increase in afforestation and cropland (−0.19) due to the forest excitation effect and deep ploughing, which corresponded to the drought in phase B and the anthropogenic ecological project in A. For low, the increase in SOC corresponded to the Great Leap Forward deforestation in period B and the reed sweep in A, which suggested the minor land change substantially affected (0.16) SOC in fragile environments. Overall, SOC dynamics revealed that anthropogenic activities affected terrestrial and aquatic ecosystems for near the centenary, especially land use. This is constructive for agroforestry management and reservoir construction, consistent with expectations like upstream carbon sequestration and downstream carbon stabilization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.