Abstract

The Tethyan domain from China to Iran hosts many important sediment-hosted Pb–Zn deposits but most have been poorly documented. This study summarizes the salient features of these deposits and discusses the type of ore, tectonic setting, and important ore controls, on the basis of new geological observations and previous publications. The Tethyan domain is characterized by the young and extensive Himalayan–Tibetan and Zagros orogens that formed through collisions between the India/Arabia and Eurasia continents since the Late Cretaceous or early Cenozoic. Abundant Mississippi Valley-type (MVT) and subordinate clastic-dominated (CD, also known as SEDEX) Pb–Zn deposits occur in this domain, including in central and eastern Himalayan–Tibetan orogen in China, the Indian passive margin in southern Pakistan, and various tectonic units of Iran. Economically important deposits contain 0.1–21 Mt Pb + Zn and have total metal resources of ∼75 Mt with ∼48% being oxidized ores. All major deposits known in this domain are MVTs (i.e., the Jinding, Huoshaoyun, Mehdiabad, and Angouran deposits).Mississippi Valley-type Pb–Zn deposits occur in continental-collision-related fold-and-thrust belts and forelands, where deposits are mostly located on the margin of the Eurasian continent, with some in the Indian and Arabian continental margins. Clastic-dominated Pb–Zn deposits occur in central Iran and southern Pakistan, hosted by deep-water siliciclastic sequences of the early Cambrian rifted continental margin of Gondwana and the Jurassic passive continental margin of India, respectively. The youngest mineralized rocks and ages constrain that some important MVT deposits (e.g., the Jinding, Chaqupacha, and Angouran deposits) were formed after a main phase of regional compression, during a regional, large-scale strike-slip or crustal-extension stage in a continental collision setting. In sense of lithologic structure, important ore controls for MVT deposits include evaporite diapir structure, carbonate/evaporite dissolution–collapse structure, pre-existing barite, and porous dolostone. Much of the primary sulfide ore in this domain has been oxidized by supergene processes. This is particularly pronounced in the newly discovered Huoshaoyun deposit, where almost all sulfides have been oxidized to smithsonite and cerussite. An understanding of tectonic setting, ore controls, and supergene processes is essential in exploring for MVT deposits in this domain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call