Abstract

AbstractThis study examines the probability for sediment entrainment to bed load and the probability for the threshold condition of sediment to be in suspension. The theoretical analysis is based on a simple one-sided exponential distribution of probability function. The probability distributions are derived from a truncated universal Gram-Charlier series expansion based on the exponential or Laplace-type distributions for turbulent velocity fluctuations. The key criterion of sediment entrainment is the hydrodynamic lift acting on a solitary particle to exceed submerged weight of the particle. In this way, a simple probability function for sediment entrainment to bed load in terms of Shields parameter containing the lift coefficient is obtained. It was found that the value of lift coefficient as 0.15 satisfactorily fitted the probability function versus Shields parameter curve with the experimental data. On the other hand, the key criterion of the threshold of sediment suspension is the fluctuations of th...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.