Abstract

We propose a two-phase model having a Newtonian rheology for the fluid phase and friction for the particle phase to describe bed-load transport in the laminar viscous regime. We have applied this continuum model to sediment transport by viscous shearing flows. The equations are shown to reduce to the momentum equation for the mixture and the Brinkman equation for the fluid velocity. This modelling is able to provide a description of the flow of the mobile granular layer. At some distance from threshold of particle motion, where the continuum approach is more realistic as the mobile layer is larger than one particle diameter, there is very little slip between the two phases and the velocities inside the mobile bed have approximately a parabolic profile. When the Poiseuille (or Couette) flow is not significantly perturbed, simple analytical results of the particle flux varying cubically with the Shields number and of the bed-load thickness varying linearly with it can then be obtained. These predictions compare favourably with experimental observations of bed-load transport in pipe flows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.