Abstract

We propose and numerically demonstrate a security-enhanced chaotic communication system by introducing optical temporal encryption (OTE) into the modulated chaotic carrier (chaos + message). In the proposed scheme, the message is firstly embedded into the original chaotic carrier generated by a conventional external-cavity semiconductor laser (ECSL), and before being transmitted to the receiver end, the modulated chaotic carrier propagates through an OTE module that consists of one phase modulator driven by a secret sinusoidal signal and one dispersive component. Our numerical results indicate that, as a direct result of the spectral expansion effect of the sinusoidal phase modulation and the phase-to-intensity conversion effect of the dispersive component, the original chaotic carrier can be encrypted as an uncorrelated chaotic signal with a flat spectrum and an efficiently-suppressed time delay signature, this greatly enhances the privacy of the modulated chaotic carrier. Moreover, comparing with the conventional ECSL-based chaotic communication systems without OTE, the proposed scheme not only shows significantly higher security against attacks including direct linear filtering and synchronization utilization, but also provides additional physical key space to further enhance the system security. In addition, by making use of the transmission dispersion for decryption, the proposed encryption scheme supports dispersion-compensation-free secure fiber communication, and it also supports centralized encryption/decryption in wavelength division multiplexing secure chaotic communication systems. The proposed scheme explores a novel encryption method for implementation in high-security chaotic communication systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.