Abstract
In this paper, a new fuzzy adaptive artificial physics optimization (FAAPO) algorithm is used to solve security-constrained optimal power flow (SCOPF) problem with wind and thermal power generators. The stochastic nature of wind speed is modeled as a Weibull probability density function. The production cost is modeled with the overestimation and underestimation of available wind energy and included in the conventional SCOPF. Wind generation cost model comprises two components, viz. reserve capacity cost for wind power surplus and penalty cost for wind power shortage. The selection of optimal gravitational constant (G) is a tedious process in conventional artificial physics optimization (APO) method. To overcome this limitation, the gravitational constant (G) is fuzzified in this work. Therefore, based upon the requirement, the gravitational constant changes adaptively. Hence, production cost is reduced, settles at optimum point and takes less number of iterations. The proposed algorithm is tested on IEEE 30-bus system and Indian 75-bus practical system, including wind power in both the test systems. It is observed that FAAPO can outperform BAT algorithm and APO algorithm. Hence, the proposed algorithm can be used for integration of wind power with thermal power generators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.