Abstract
One of the main factors impacting the reliability of energy systems nowadays is the growing interdependence between electricity and gas networks due to the increase in the installation of gas-fired units. Security-constrained unit commitment (SCUC) models are used to economically schedule generating units without compromising the system reliability. This paper proposes a novel SCUC formulation that includes dynamic gas constraints, such as the line pack, and transmission contingencies in power and gas networks for studying the integrated system reliability. A Benders’ decomposition with linear programming techniques is developed to be able to study large systems. By including dynamic gas constraints into the SCUC, the proposed model accounts for the flexibility and reliability that power systems require from gas systems in the short term. Case studies of different size and complexity are employed to illustrate how the reliability of one system is affected by the reliability of the other. These experiments show how both systems operate in a secure way (by including contingencies) increases operating costs by approximately 9% and also show how these costs can vary by 24% depending on the line pack scheduling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.