Abstract
AbstractIn 2007, the US National Institute for Standards and Technology announced a call for the design of a new cryptographic hash algorithm in response to vulnerabilities identified in existing hash functions, such as MD5 and SHA-1. NIST received many submissions, 51 of which got accepted to the first round. At present, 14 candidates are left in the second round. An important criterion in the selection process is the SHA-3 hash function security and more concretely, the possible security reductions of the hash function to the security of its underlying building blocks. While some of the candidates are supported with firm security reductions, for most of the schemes these results are still incomplete. In this paper, we compare the state of the art provable security reductions of the second round SHA-3 candidates. Surprisingly, we derive some security bounds from the literature, which the hash function designers seem to be unaware of. Additionally, we generalize the well-known proof of collision resistance preservation, such that all SHA-3 candidates with a suffix-free padding are covered.KeywordsSHA-3 competitionclassificationhash function security
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.