Abstract

This paper presents a new power system planning strategy which combines firefly algorithm (FFA) with pattern search algorithm (PS). The purpose is minimizing total fuel cost, total power loss and reducing total voltage deviation, with the objective of enhancing the loading margin stability and consequently the power system security. A new interactive and simple mechanism, inspired in brainstorming process, is proposed that allows FFA and PS algorithms to explore new regions of the search space. In this study the Static VAR compensator (SVC) is modeled and integrated in an efficient location which is chosen considering the voltage stability index. The proposed algorithm is interactive and tries to optimize a set of control variables at the same time, namely, active power generations, voltage of generators, tap transformers, and the reactive power of shunt compensators to optimize three objective functions such as: fuel cost, total power loss and total voltage deviation. These variables are optimized using a flexible interactive and competitive search mechanism. The proposed planning strategy has been examined and applied to two practical test systems IEEE 14-Bus and IEEE 30-Bus. Simulation results confirm the effectiveness of this hybrid strategy for solving the security optimal power flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call