Abstract

In the BB84 protocol with a perfect single photon source, the key rate decreases linearly with the transmission η of the channel. If we simply replace this source with a weak coherent-state pulse, the key rate drops more rapidly (as O(η2)) since the presence of multiple photons favors the eavesdropper. Here we discuss the unconditional security of a quantum key distribution protocol in which bit values are encoded in the phase of a weak coherent-state pulse relative to a strong reference pulse, which is essentially the one proposed by Bennett in 1992 (the B92 scheme). We show that in the limit of high loss in the transmission channel, we can construct a secret key with a rate proportional to the transmission η of the channel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call