Abstract

In this paper, we clarify the security of practical cryptosystems with hash functions based on key derivation functions (KDFs). We use the indifferentiability framework in order to discuss the security because the indifferentiability from Random Oracle (and its variants) guarantees that cryptosystems remain secure even if Random Oracles (ROs) are instantiated with hash functions. Though previous works on the indifferentiability of Merkle-Damgård (MD) hash functions focus on stand-alone hash functions, there is no work which focuses on MD hash functions with KDFs. Many cryptosystems need longer output lengths of hash functions than stand-alone hash functions and KDFs are used to generate longer digests as specified in PKCS #1 v2.1 and IEEE P1363. Specifically, we obtain the following results. We denote the MD hash function using Stam’s type-II compression function by MD-SCFII and MD-SCFII with KDFs by KDF-MD-SCFII. Cryptosystems secure in the pub-RO model (FDH, PSS, Fiat-Shamir, and so on): Dodis et al. proposed the indifferentiability from pub-RO to prove the security of these cryptosystems using MD-SCFII while did not consider the KDF structures. So we propose a different framework, indifferentiability from privleak-RO. Using this framework and their result, we show that these cryptosystems using KDF-MD-SCFIIs are secure. Encryption schemes secure in the RO model (OAEP, RSA-KEM, PSEC-KEM, ECIES-KEM and so on): The encryption schemes are secure in the “fixed inputl length” RO model because the input lengths of ROs from the encryption schemes are fixed. We show that this fact guarantees the security of the encryption schemes using KDF-MD-SCFII. KeywordsHash FunctionEncryption SchemeRandom OracleCompression FunctionRandom Oracle ModelThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.