Abstract

Elliptic curves over Galois fields are widely used in modern cryptography. Cryptosystems based on elliptic curves are commonly deemed more secure than RSA for a given key size. However, with the rapid progress of quantum computing, the security of this traditional systems faces unprecedented challenge. To address this concern, this paper explores the resilience of a generalization of traditional elliptic curve cryptography. That is, we explore elliptic curves over non-prime rings (Zn), instead of fields. Elliptic curves over Zn for a composite integer n has been considered by researchers on information security. However, it is unclear how they stand against the unparalleled power of quantum computers. This article investigates quantum attacks on cryptosystems based on this new paradigm. The conclusion sheds light on the pressing and important task of searching for post-quantum cryptographic systems. In particular, the effectiveness of Shors algorithm (or its variation) on such systems is analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.