Abstract

The Internet of Things (IoT) is deeply changing our society. Daily we use smart devices that automatically collect, aggregate and exchange data about our lives. These data are often pivotal when they are used e.g. to train learning algorithms, to control cyber-physical systems, and to guide administrators to take crucial decisions. As a consequence, security attacks on devices can cause severe damages on IoT systems that take care of essential services, such as delivering power, water, transport, and so on. The difficulty of preventing intrusions or attacks is magnified by the big amount of devices and components IoT systems are composed of. Therefore, it is crucial to identify the most critical components in a network of devices and to understand their level of vulnerability, so as to detect where it is better to intervene for improving security. In this paper, we start from the modelling language IoT-LySa and from the results of Control Flow Analysis that statically predict the manipulation of data and their possible trajectories. On this basis, we aim at deriving possible graphs of how data move and which are their dependencies. These graphs can be analysed, by exploiting some security metrics - among which those introduced by Barrere, Hankin et al. - offering system administrators different estimates of the security level of their systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.