Abstract

We address emerging threats to the security of photonic networks as these networks become heterogeneous being opened to the upper layers, other operators, and end users. We review the potential threats, mainly loss of the confidentiality of user data transmitted through optical fibers and disturbances of network control, both of which could seriously damage the entire network. We then propose a novel conceptual model of a secure photonic network by introducing a quantum key distribution (QKD) network to its legacy structure. Secure keys generated by the QKD network are managed by key management agents (KMAs) and used to encrypt not only user data but also control signals. The KMAs cooperate with the generalized multiprotocol label-switching controller for secure path provisioning and drive photonic and modern crypto engines in appropriate combinations. Finally, we present a roadmap of a deployment scenario, starting from niche applications such as mission critical and business applications and the next. Digital cinema distribution through a photonic network is presented as an example of a niche application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call