Abstract

Mobile edge computing usually uses caching to support multimedia contents in 5G mobile Internet to reduce the computing overhead and latency. Mobile edge caching (MEC) systems are vulnerable to various attacks such as denial of service attacks and rogue edge attacks. This article investigates the attack models in MEC systems, focusing on both the mobile offloading and the caching procedures. In this article, we propose security solutions that apply reinforcement learning (RL) techniques to provide secure offloading to the edge nodes against jamming attacks. We also present lightweight authentication and secure collaborative caching schemes to protect data privacy. We evaluate the performance of the RL-based security solution for mobile edge caching and discuss the challenges that need to be addressed in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.