Abstract

This work is devoted the problem of a security-guaranteed filter design for a class of discrete-time Markov jump systems that are vulnerable to stochastic deception attacks and have random sensor saturation. Deception attacks, in particular, are taken into account in the filter when the attacker attempts to modify the broadcast signal in communication networks by inserting some misleading information data into the assessment output. The Bernoulli distribution is satisfied by two sets of introduced stochastic variables. It shows the likelihood that the broadcaster’s data transmissions will be the focus of deception attacks and sensor saturation. The Lyapunov functional technique is established, and criteria are derived to ensure that the system is mean-square stable. Furthermore, explicit expression of the filter gains is obtained by solving a set of linear matrix inequalities. Lastly, two simulation examples including a synthetic genetic regulatory network are provided to further demonstrate the validity and efficiency of the suggested theoretical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call