Abstract

Millimeter wave MIMO wireless communication systems are deployed in 5G and next‐generation networks. The effectiveness of deep learning models for improving the performance of these systems has been proven in the literature. However, several deep learning models are vulnerable to security threats, such as adversarial attacks. Therefore, for the deployment of these systems, it is essential to make them resilient to such kinds of attacks for good quality secure communication. Adversarial training is a solution by which deep learning models are trained for adversarial attacks beforehand. Adversarial training for three types of adversarial attacks, that is, Fast Gradient Sign Method, Iterative Fast Gradient Sign Method, and Momentum Iterative Fast Gradient Sign Method is implemented in this paper. The simulation results depict a decrease in the error at the receiving end after adversarial training, even after an adversarial attack has been applied. © 2024 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.