Abstract

Security-sensitive applications that access and generate large data sets are emerging in various areas including bioinformatics and high energy physics. Data grids provide such data-intensive applications with a large virtual storage framework with unlimited power. However, conventional scheduling algorithms for data grids are unable to meet the security needs of data-intensive applications. In this paper we address the problem of scheduling data-intensive jobs on data grids subject to security constraints. Using a security- and data-aware technique, a dynamic scheduling strategy is proposed to improve quality of security for data-intensive applications running on data grids. To incorporate security into job scheduling, we introduce a new performance metric, degree of security deficiency, to quantitatively measure quality of security provided by a data grid. Results based on a real-world trace confirm that the proposed scheduling strategy significantly improves security and performance over four existing scheduling algorithms by up to 810% and 1478%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.