Abstract

Security control aims to guarantee the consensus of multiagent systems (MASs) in the presence of the denial-to-service attacker. Most of the existing distributed controllers are invalid during the attack interval due to the paralyzed communication channels. In order to overcome this difficulty, a novel hybrid distributed control protocol is designed. Here, the controller uses the latest information saved in the buffers in the presence of malicious attacks, which will further enhance the security of MASs. Some sufficient conditions on the coupled strength and attack parameters are derived to achieve the leader-following consensus of MASs. Furthermore, we estimate the upper bounds of denial-of-service (DoS) frequency and DoS duration which the MASs can tolerate before losing consensus. Notice that we also reduce the computational complexity via the property of the Kronecker product. Besides, an observer-based model is proposed and the corresponding consensus criterion is established to reduce the effects of attackers on the controller. Finally, the efficiency of our theoretical results is illustrated by a numerical example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.