Abstract

In a restructured power market, the independent system operator (ISO) executes the security-constrained unit commitment (SCUC) program to plan a secure and economical hourly generation schedule for the day-ahead market. This paper introduces an efficient SCUC approach with ac constraints that obtains the minimum system operating cost while maintaining the security of power systems. The proposed approach applies the Benders decomposition for separating the unit commitment (UC) in the master problem from the network security check in subproblems. The master problem applies the augmented Lagrangian relaxation (LR) method and dynamic programming (DP) to solve UC. The subproblem checks ac network security constraints for the UC solution to determine whether a converged and secure ac power flow can be obtained. If any network violations arise, corresponding Benders cuts will be formed and added to the master problem for solving the next iteration of UC. The iterative process will continue until ac violations are eliminated and a converged optimal solution is found. In this paper, a six-bus system and the IEEE 118-bus system with 54 units are analyzed to exhibit the effectiveness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.