Abstract

This paper introduces an innovative method for implementing demand response (DR) to enable household appliance scheduling to minimize CO2 emissions and improve the voltage security in transmission networks. A new demand response (DR) based on the time-varying emission curve is proposed in this paper to reduce CO2 emissions. In addition to emission-based DRs, non-responsive loads are considered. On the other hand, load modeling is believed to be one of the significant parts of the power system studies so that inaccurate load models can lead to dramatically incorrect simulation outputs leading to an unfortunate event such as the 1983 Swedish blackout. DR is therefore applicable to a number of loads, including induction type motors as well as exponential loads. In addition, both active and reactive DRs are considered in this model. This paper introduces a new model called the Security Constraint Two-Stage Framework arising from the complexity of the problem. This model includes a large scale (LS) stage and a small scale (SS) stage set in which the SS stage uses the LS stage results as inputs. The proposed design is being implemented on the IEEE 300 bus power network to investigate the desired objectives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.