Abstract
Deep learning is the buzz word in recent times in the research field due to its various advantages in the fields of healthcare, medicine, automobiles, etc. A huge amount of data is required for deep learning to achieve better accuracy; thus, it is important to protect the data from security and privacy breaches. In this chapter, a comprehensive survey of security and privacy challenges in deep learning is presented. The security attacks such as poisoning attacks, evasion attacks, and black-box attacks are explored with its prevention and defence techniques. A comparative analysis is done on various techniques to prevent the data from such security attacks. Privacy is another major challenge in deep learning. In this chapter, the authors presented an in-depth survey on various privacy-preserving techniques for deep learning such as differential privacy, homomorphic encryption, secret sharing, and secure multi-party computation. A detailed comparison table to compare the various privacy-preserving techniques and approaches is also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.