Abstract

Future engineering systems with new capabilities that far exceed today's levels of autonomy, functionality, usability, dependability, and cyber security are predicted to be designed and developed using cyber-physical systems (CPSs). In this paper, the security of CPSs is investigated through a case study of a smart grid by using a reinforcement learning (RL) augmented attack graph to effectively highlight the subsystems' weaknesses. In particular, the state action reward state action (SARSA) RL technique is used, in which the agent is taken to be the attacker, and an attack graph created for the system is built to resemble the environment. SARSA uses rewards and penalties to identify the worst-case attack scenario; with the most cumulative reward, an attacker may carry out the most harm to the system with the fewest available actions. Results showed successfully the worst-case attack scenario with a total reward of 26.9 and identified the most severely damaged subsystems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.