Abstract
Enabling remote data integrity checking with failure recovery becomes exceedingly critical in distributed cloud systems. With the properties of a lower repair bandwidth while preserving fault tolerance, regenerating coding and network coding (NC) have received much attention in the coding-based storage field. Recently, an outstanding outsourced auditing scheme named NC-Audit was proposed for regenerating-coding-based distributed storage. The scheme claimed that it can effectively achieve lightweight privacy-preserving data verification remotely for these networked distributed systems. However, our algebraic analysis shows that NC-Audit can be easily broken due to a potential defect existing in its schematic design. That is, an adversarial cloud server can forge some illegal blocks to cheat the auditor with a high probability when the coding field is large. From the perspective of algebraic security, we propose a remote data integrity checking scheme RNC-Audit by resorting to hiding partial critical information to the server without compromising system performance. Our evaluation shows that the proposed scheme has significantly lower overhead compared to the state-of-the-art schemes for distributed remote data auditing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.