Abstract

The field of synthetic biology relies on an ever-growing supply chain of synthetic genetic material. Technologies to secure the exchange of this material are still in their infancy. Solutions proposed thus far have focused on watermarks, a dated security approach that can be used to claim authorship, but is subject to counterfeit, and does not provide any information about the integrity of the genetic material itself. In this manuscript, we describe how data encryption and digital signature algorithms can be used to ensure the integrity and authenticity of synthetic genetic constructs. Using a pilot software that generates digital signatures and other encrypted data for plasmids, we demonstrate that we can predictably extract information about the author, the identity, the integrity of plasmid sequences, and even annotations from sequencing data alone without a reference sequence, all without compromising the function of the plasmids. Encoding a digital signature into a DNA molecule provides an avenue for genetic designers to claim authorship of DNA molecules. This technology could help compliance with material transfer agreements and other licensing agreements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.