Abstract

AbstractWe studied electrochemical behavior of UVO2+/UVIO22+ in non‐aqueous liquid electrolytes to clarify what is required to attain its reversibility for utilizing depleted U in a redox‐flow battery. To transfer knowledge from former pyrochemical systems in high temperature molten salts, 1‐ethyl‐3‐methylimidazolium bis(trifluoromethyl)sulfonylamide ([emim]Tf2N) ionic liquid was employed here. As a result, a reversible redox reaction of the UVO2+/UVIO22+ was successfully observed on a glassy carbon working electrode under presence of Cl− in [emim]Tf2N, where [UVIO2Cl4]2−+e−=[UVO2Cl4]3− occurs after stabilization of both U oxidation states by the Cl− coordination. The observed electrochemical responses are rather sensitive to an electrode material, so that cyclic voltammograms on a Pt working electrode were actually irreversible. To improve diffusivity of solutes, viscosity (η) of [emim]Tf2N diluted with an auxiliary molecular solvent, N,N‐dimethylformamide (DMF), was examined under absence and presence of Cl−. When the mole fraction of DMF (xDMF) is 0.769, η of the mixture becomes sufficiently low to be utilized as a liquid electrolyte. Finally, we have succeeded in demonstrating a reversible redox reaction of [UVIO2Cl4]2−+e−=[UVO2Cl4]3− in the [emim]Tf2N‐DMF (50 : 50 v/v, xDMF=0.769) liquid electrolyte containing [Cl−]=0.519 M, where η=6.2 mPa ⋅ s.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call