Abstract
Smart Grid applications require accurate and correct data transmission from publisher to subscribers with critical communication latency requirements. Since the smart grid is being supported by distributed communication networks, deployed using various wired and wireless technologies, including IP-based networks, securing the communication infrastructure is both critically important and challenging. In this paper, we propose a secure and efficient data delivery scheme, based on a restricted yet dynamic publisher-subscriber architecture, for the published messages from a publisher to the subscribers distributed in the smart grid network. The scheme ensures that the published message is delivered from an authentic publisher to only those authorized subscribers by verifying publisher's signature and access structure of all subscribers. Operation overheads are reduced by performing only one encryption and decryption or hashing per subscriber location using a proxy node as a remote terminal unit. Our analysis shows that the scheme is resistant against replay, man-in-the-middle, and impersonation attacks. Performance evaluation shows that the scheme can support 600 subscribers given the communication latency requirement of 3 ms. We provide the performance of the scheme under different scenarios, and observe that the efficiency of our scheme increases as the ratio of the geographical locations within a substation to the number of subscribers increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.