Abstract

The deployment of optical network infrastructure and development of new network services are growing rapidly for beyond 5/6G networks. However, optical networks are vulnerable to several types of security threats, such as single-point failure, wormhole attacks, and Sybil attacks. Since the uptake of e-commerce and e-services has seen an unprecedented surge in recent years, especially during the COVID-19 pandemic, the security of these transactions is essential. Blockchain is one of the most promising solutions because of its decentralized and distributed ledger technology, and has been employed to protect these transactions against such attacks. However, the security of blockchain relies on the computational complexity of certain mathematical functions, and because of the evolution of quantum computers, its security may be breached in real-time in the near future. Therefore, researchers are focusing on combining quantum key distribution (QKD) with blockchain to enhance blockchain network security. This new technology is known as quantum-secured blockchain. This article describes different attacks in optical networks and provides a solution to protect networks against security attacks by employing quantum-secured blockchain in optical networks. It provides a brief overview of blockchain technology with its security loopholes, and focuses on QKD, which makes blockchain technology more robust against quantum attacks. Next, the article provides a broad view of quantum-secured blockchain technology. It presents the network architecture for the future research and development of secure and trusted optical networks using quantum-secured blockchain. The article also highlights some research challenges and opportunities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.