Abstract

In recent years, Mobile Edge Computing (MEC) has revolutionized the landscape of the telecommunication industry by offering low-latency, high-bandwidth, and real-time processing. With this advancement comes a broad range of security challenges, the most prominent of which is Distributed Denial of Service (DDoS) attacks, which threaten the availability and performance of MEC’s services. In most cases, Intrusion Detection Systems (IDSs), a security tool that monitors networks and systems for suspicious activity and notify administrators in real time of potential cyber threats, have relied on shallow Machine Learning (ML) models that are limited in their abilities to identify and mitigate DDoS attacks. This article highlights the drawbacks of current IDS solutions, primarily their reliance on shallow ML techniques, and proposes a novel hybrid Autoencoder–Multi-Layer Perceptron (AE–MLP) model for intrusion detection as a solution against DDoS attacks in the MEC environment. The proposed hybrid AE–MLP model leverages autoencoders’ feature extraction capabilities to capture intricate patterns and anomalies within network traffic data. This extracted knowledge is then fed into a Multi-Layer Perceptron (MLP) network, enabling deep learning techniques to further analyze and classify potential threats. By integrating both AE and MLP, the hybrid model achieves higher accuracy and robustness in identifying DDoS attacks while minimizing false positives. As a result of extensive experiments using the recently released NF-UQ-NIDS-V2 dataset, which contains a wide range of DDoS attacks, our results demonstrate that the proposed hybrid AE–MLP model achieves a high accuracy of 99.98%. Based on the results, the hybrid approach performs better than several similar techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call