Abstract
Cybercriminals are always developing innovative strategies to confound and frustrate their victims. Therefore, maintaining constant vigilance is essential if one wishes to protect the availability, confidentiality, and integrity of digital systems. Machine learning (ML) is becoming an increasingly powerful technique for doing intelligent cyber analysis, which enables proactive defenses. Machine learning (ML) has the potential to thwart future assaults by studying the recurring patterns that have already been successful. Nevertheless, there are two significant drawbacks associated with the utilization of ML in security analysis. To begin, the most advanced machine learning systems have significant problems with their computing overheads. Because of this constraint, firms are unable to completely embrace ML-based cyber strategies. Second, in order for security analysts to make advantage of ML for a wide variety of applications, they will need to develop specialized frameworks. In this study, we aim to put a numerical value on the degree to which a hub can improve the safety of an ecosystem. Typical cyberattacks were carried out on an Internet of Things (IoT) network located within a smart house in order to validate the hub. Further investigation of the intrusion detection system's (IDS) resistance to adversarial machine learning (AML) assaults was carried out. In this method, models can be attacked by supplying adversarial samples that attempt to take advantage of the defects in the detector that are present in the pre-trained model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal on Recent and Innovation Trends in Computing and Communication
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.